Search results for "Multivariate disease mapping"
showing 4 items of 4 documents
Some contributions in disease mapping modeling
2020
Disease mapping ha recibido un gran interés durante las tres últimas décadas. Esta área de investigación persigue el estudio de la distribución geográfica de eventos relacionados con la salud, tales como la mortalidad o la incidencia de enfermedades, agregados en unidades geográficas, con el fin de identificar principalmente aquellas localizaciones que presentan un mayor riesgo. La aplicación de métodos estadísticos avanzados para llevar a cabo las estimaciones de los riesgos resulta fundamental para obtener estimaciones precisas y profundizar en el entendimiento de la distribución geográfica de las enfermedades. En esta tesis nos centramos en la aplicación y evaluación de varias propuestas…
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Geographical Variability in Mortality in Urban Areas: A Joint Analysis of 16 Causes of Death.
2021
The authors acknowledge the support of the research grants PI16/00670, PI16/00755, PI16/01004, PI16/01187, PI16/01273, PI16/01281, and PI18/01313 of Instituto de Salud Carlos III, co-funded with FEDER grants.
On the use of adaptive spatial weight matrices from disease mapping multivariate analyses
2020
Conditional autoregressive distributions are commonly used to model spatial dependence between nearby geographic units in disease mapping studies. These distributions induce spatial dependence by means of a spatial weights matrix that quantifies the strength of dependence between any two neighboring spatial units. The most common procedure for defining that spatial weights matrix is using an adjacency criterion. In that case, all pairs of spatial units with adjacent borders are given the same weight (typically 1) and the remaining non-adjacent units are assigned a weight of 0. However, assuming all spatial neighbors in a model to be equally influential could be possibly a too rigid or inapp…